Socure Logo

Socure

Senior Data Scientist - Digital / Device Intelligence

Posted Yesterday
Remote
Hiring Remotely in USA
150K-185K Annually
Senior level
Remote
Hiring Remotely in USA
150K-185K Annually
Senior level
The Senior Data Scientist will develop machine learning systems for fraud prevention, contribute to data pipelines, and mentor junior data scientists. This role involves working with complex data signals and collaborating across teams.
The summary above was generated by AI
Why Socure?

Socure is building the identity trust infrastructure for the digital economy — verifying 100% of good identities in real time and stopping fraud before it starts. The mission is big, the problems are complex, and the impact is felt by businesses, governments, and millions of people every day.

We hire people who want that level of responsibility. People who move fast, think critically, act like owners, and care deeply about solving customer problems with precision. If you want predictability or narrow scope, this won’t be your place. If you want to help build the future of identity with a team that holds a high bar for itself — keep reading.

About the Role

Socure is the leading provider of digital identity verification and fraud prevention solutions, leveraging AI and machine learning to power the most accurate identity trust decisions. Our mission is to eliminate identity fraud and ensure online trust across industries.

We are seeking a Senior Data Scientist to join our Digital Intelligence team. In this role, you will drive the development of machine learning features and models that leverage device, network, and behavioral data to power fraud prevention and identity verification. You’ll work with rich, high-volume data from browser, mobile, and API traffic to surface meaningful insights and scalable risk signals. This is a great opportunity to own impactful projects, collaborate cross-functionally, and deepen your expertise in applied ML for device and behavioral intelligence.

What You'll Do
  • Design and deploy advanced machine learning systems for device identification, anomaly detection, and fraud prevention—balancing precision, recall, and real-world adversarial dynamics.

  • Contribute to the development of scalable data pipelines and production ML workflows using structured and unstructured telemetry (e.g., browser, mobile, session data).

  • Investigate high-complexity signals (e.g., emulator use, spoofing, low-entropy fingerprints), applying advanced statistical methods and domain knowledge to detect fraud and abuse.

  • Translate ambiguous business problems into modeling approaches, using a combination of supervised, unsupervised, and heuristic techniques.

  • Partner with engineering, product, and risk teams to contribute to data architecture decisions, signal collection, and planning.

  • Drive experimental design, A/B testing frameworks, and robust validation techniques to ensure model generalizability and long-term trust.

  • Contribute to team standards for ML explainability, risk evaluation, and feature logging.

  • Document methodologies and communicate results effectively through dashboards, presentations, and reports for both technical and executive audiences.

  • Mentor junior data scientists and participate in cross-functional working groups.

What You Bring
  • Master’s degree (or equivalent practical experience) in Computer Science, Machine Learning, Statistics, or a related quantitative field.

  • 6+ years of experience in data science or applied machine learning, including experience working in production environments.

  • Excellent SQL skills and extensive experience with large-scale databases and data modeling.

  • Proven track record of deploying and maintaining ML models in live systems, ideally involving streaming or near-real-time data.

  • Proficiency in Python and distributed computing tools (e.g., Spark, PySpark).

  • Hands-on experience with ML frameworks such as scikit-learn, XGBoost, TensorFlow, or similar.

  • Excellent communication skills—able to explain complex technical results to non-technical stakeholders and senior leadership.

  • Experience designing and interpreting experiments, working with real-world noisy datasets, and applying sound validation techniques to assess model robustness.

  • Demonstrated ability to break down ambiguous problems, apply analytical rigor, and uncover meaningful insights that influence product or risk strategies.

  • Strong judgment across data quality, model selection, and business impact tradeoffs.

  • Collaborative mindset and experience working cross-functionally with product, engineering, and analytics teams.

Preferred Qualifications
  • Background in fraud detection, behavioral biometrics, anomaly detection, or adversarial modeling.

  • Experience with high-cardinality feature engineering techniques (e.g., frequency/target encoding, embeddings).

  • Familiarity with privacy-preserving or robust ML techniques.

  • Knowledge of browser/mobile fingerprinting, VPN/proxy detection, or telemetry signal processing.

What You’ll Gain
  • Hands-on experience with real-world data science challenges in a high-impact industry.

  • A collaborative and inclusive work environment that fosters learning and growth.

  • Opportunities to grow into staff-level or technical leadership roles over time.

Socure is an equal opportunity employer that values diversity in all its forms within our company. We do not discriminate based on race, religion, color, national origin, gender, sexual orientation, age, marital status, veteran status, or disability status.
If you need an accommodation during any stage of the application or hiring process—including interview or onboarding support—please reach out to your Socure recruiting partner directly.

Follow Us!

YouTube | LinkedIn | X (Twitter) | Facebook

Top Skills

Pyspark
Python
Scikit-Learn
Spark
SQL
TensorFlow
Xgboost

Similar Jobs

3 Minutes Ago
Remote or Hybrid
Denver, CO, USA
86K-117K Annually
Mid level
86K-117K Annually
Mid level
Productivity • Sales • Software
The Technical Consultant will provide technical expertise for enterprise B2B projects, collaborate with teams for implementation, and ensure client success.
Top Skills: Agentic AiAPIsCSSGenerative AiGraphQLHTMLHTTPIntegration PlatformsLlmsMake.ComN8NOauth 2.0Power AutomateRestfulSaml 2.0ScimWorkatoZapier
3 Minutes Ago
Remote or Hybrid
New York, NY, USA
96K-130K Annually
Mid level
96K-130K Annually
Mid level
Productivity • Sales • Software
The Technical Consultant will ensure client success by delivering technical expertise in large implementations, working with integration and custom user experiences, and providing support on data migrations and application development.
Top Skills: Agentic AiAPIsCSSGenerative AiGraphQLHTMLHTTPLlmsMake.ComN8NOauth 2.0Power AutomateRestfulSaml 2.0ScimWorkatoZapier
3 Minutes Ago
Remote or Hybrid
Detroit, MI, USA
116K-145K Annually
Senior level
116K-145K Annually
Senior level
Artificial Intelligence • Big Data • Cloud • Information Technology • Software • Big Data Analytics • Automation
As a Lead Customer Success Engineer, you will build post-sales relationships with strategic customers, ensuring product adoption and value realization, while mentoring other CSEs and acting as a technical advisor.
Top Skills: AjaxAndroid WebkitAnsibleApacheAWSAzureBmcChefCloud FoundryCSSGCPHTMLIisiOSJava ServletsJavaScriptJbossJenkinsKubernetesOpenshiftOpenstackPHPPuppetReactServicenowWeblogicWebsphere

What you need to know about the NYC Tech Scene

As the undisputed financial capital of the world, New York City is an epicenter of startup funding activity. The city has a thriving fintech scene and is a major player in verticals ranging from AI to biotech, cybersecurity and digital media. It also has universities like NYU, Columbia and Cornell Tech attracting students and researchers from across the globe, providing the ecosystem with a constant influx of world-class talent. And its East Coast location and three international airports make it a perfect spot for European companies establishing a foothold in the United States.

Key Facts About NYC Tech

  • Number of Tech Workers: 549,200; 6% of overall workforce (2024 CompTIA survey)
  • Major Tech Employers: Capgemini, Bloomberg, IBM, Spotify
  • Key Industries: Artificial intelligence, Fintech
  • Funding Landscape: $25.5 billion in venture capital funding in 2024 (Pitchbook)
  • Notable Investors: Greycroft, Thrive Capital, Union Square Ventures, FirstMark Capital, Tiger Global Management, Tribeca Venture Partners, Insight Partners, Two Sigma Ventures
  • Research Centers and Universities: Columbia University, New York University, Fordham University, CUNY, AI Now Institute, Flatiron Institute, C.N. Yang Institute for Theoretical Physics, NASA Space Radiation Laboratory

Sign up now Access later

Create Free Account

Please log in or sign up to report this job.

Create Free Account